NumPy provides functions to calculate both the maximum and minimum values of an array simultaneously. You can use np.max()
to find the maximum value and np.min()
to find the minimum value of an array. Here's an example:
import numpy as np # Create a NumPy array arr = np.array([3, 1, 5, 2, 4]) # Calculate the maximum and minimum values simultaneously max_value = np.max(arr) min_value = np.min(arr) print("Maximum value:", max_value) print("Minimum value:", min_value)
In this example, we create a NumPy array arr
and then use np.max()
and np.min()
to calculate the maximum and minimum values, respectively.
If you want to find both the maximum and minimum values in a single function call and get the results as a tuple, you can use the np.max()
and np.min()
functions together like this:
import numpy as np # Create a NumPy array arr = np.array([3, 1, 5, 2, 4]) # Calculate both maximum and minimum values in one function call (max_value, min_value) = np.max(arr), np.min(arr) print("Maximum value:", max_value) print("Minimum value:", min_value)
This way, you get both the maximum and minimum values in a single tuple, which can be convenient if you need both values simultaneously.
NumPy function for simultaneous max() and min() calculation
import numpy as np def simultaneous_max_min(array): max_val = np.max(array) min_val = np.min(array) return max_val, min_val # Example usage: array = np.array([1, 3, 5, 7, 9]) max_val, min_val = simultaneous_max_min(array) print("Maximum value:", max_val) print("Minimum value:", min_val)
NumPy function for finding both max and min in one pass
import numpy as np def simultaneous_max_min_one_pass(array): max_val = np.amax(array) min_val = np.amin(array) return max_val, min_val # Example usage: array = np.array([1, 3, 5, 7, 9]) max_val, min_val = simultaneous_max_min_one_pass(array) print("Maximum value:", max_val) print("Minimum value:", min_val)
NumPy function for computing both max and min efficiently
import numpy as np def simultaneous_max_min_efficient(array): max_val = np.nanmax(array) min_val = np.nanmin(array) return max_val, min_val # Example usage: array = np.array([1, 3, 5, 7, 9]) max_val, min_val = simultaneous_max_min_efficient(array) print("Maximum value:", max_val) print("Minimum value:", min_val)
NumPy function to find both max and min values in an array
import numpy as np def simultaneous_max_min_builtin(array): max_val = np.max(array) min_val = np.min(array) return max_val, min_val # Example usage: array = np.array([1, 3, 5, 7, 9]) max_val, min_val = simultaneous_max_min_builtin(array) print("Maximum value:", max_val) print("Minimum value:", min_val)
NumPy function for simultaneous max and min computation
import numpy as np def simultaneous_max_min_builtin(array): max_val = np.amax(array) min_val = np.amin(array) return max_val, min_val # Example usage: array = np.array([1, 3, 5, 7, 9]) max_val, min_val = simultaneous_max_min_builtin(array) print("Maximum value:", max_val) print("Minimum value:", min_val)
NumPy function for finding both max and min values
import numpy as np def simultaneous_max_min_short(array): max_val, min_val = np.max(array), np.min(array) return max_val, min_val # Example usage: array = np.array([1, 3, 5, 7, 9]) max_val, min_val = simultaneous_max_min_short(array) print("Maximum value:", max_val) print("Minimum value:", min_val)
NumPy function for calculating both max and min efficiently
import numpy as np def simultaneous_max_min_efficient(array): max_val, min_val = np.nanmax(array), np.nanmin(array) return max_val, min_val # Example usage: array = np.array([1, 3, 5, 7, 9]) max_val, min_val = simultaneous_max_min_efficient(array) print("Maximum value:", max_val) print("Minimum value:", min_val)
NumPy function for simultaneous max and min computation with NaN handling
import numpy as np def simultaneous_max_min_nan(array): max_val = np.nanmax(array) min_val = np.nanmin(array) return max_val, min_val # Example usage: array = np.array([1, 3, np.nan, 5, 7, 9]) max_val, min_val = simultaneous_max_min_nan(array) print("Maximum value (NaN handled):", max_val) print("Minimum value (NaN handled):", min_val)
NumPy function for finding both max and min values concurrently
import numpy as np def simultaneous_max_min_concurrent(array): max_val, min_val = np.max(array), np.min(array) return max_val, min_val # Example usage: array = np.array([1, 3, 5, 7, 9]) max_val, min_val = simultaneous_max_min_concurrent(array) print("Maximum value:", max_val) print("Minimum value:", min_val)
NumPy function for simultaneous computation of max and min
import numpy as np def simultaneous_max_min(array): max_val, min_val = np.max(array), np.min(array) return max_val, min_val # Example usage: array = np.array([1, 3, 5, 7, 9]) max_val, min_val = simultaneous_max_min(array) print("Maximum value:", max_val) print("Minimum value:", min_val)
powerbi-desktop vhosts same-origin-policy plot-annotations android-paging sms-gateway android-studio-2.2 win-universal-app directory-structure validationattribute