To apply a custom function using a rolling window in a Pandas DataFrame or Series, you can use the .rolling()
method in combination with the .apply()
method. The .rolling()
method creates a rolling view of the data, and then you can apply your custom function to this rolling view.
Here's an example of how you can achieve this:
import pandas as pd # Sample DataFrame data = {'value': [10, 20, 30, 40, 50, 60]} df = pd.DataFrame(data) # Define a custom function to apply to the rolling window def custom_function(window): # Your custom logic here, for example, return the sum of the window return window.sum() # Apply the custom function using rolling window of size 3 rolling_result = df['value'].rolling(window=3).apply(custom_function, raw=True) # Add the rolling result as a new column in the DataFrame df['rolling_sum'] = rolling_result print(df)
In this example, we create a custom function custom_function
that calculates the sum of the values within the rolling window. We then use the .rolling()
method to create a rolling view of the value
column with a window size of 3. The .apply()
method is used to apply the custom function to each rolling window. The raw=True
parameter is used to pass the raw NumPy array of values to the custom function.
Finally, we add the rolling result as a new column named rolling_sum
to the original DataFrame.
Keep in mind that rolling window calculations can be memory-intensive, especially for large datasets. If you're working with a large dataset, you might need to consider more efficient ways to perform rolling window calculations.
How to apply a custom function with rolling window in Pandas?
import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom function def custom_function(data): return data.max() - data.min() # Apply custom function with rolling window result = df['A'].rolling(window=3).apply(custom_function) print(result)
How to compute rolling mean with a custom window size in Pandas?
import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom function for rolling mean def custom_rolling_mean(data, window_size): return data.rolling(window=window_size).mean() # Apply custom rolling mean with window size 3 result = custom_rolling_mean(df['A'], window_size=3) print(result)
How to apply a custom aggregation function with rolling window in Pandas?
import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom aggregation function def custom_aggregation(data): return data.sum() / len(data) # Apply custom aggregation function with rolling window result = df['A'].rolling(window=3).apply(custom_aggregation) print(result)
How to compute rolling standard deviation with a custom window size in Pandas?
import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom function for rolling standard deviation def custom_rolling_std(data, window_size): return data.rolling(window=window_size).std() # Apply custom rolling standard deviation with window size 3 result = custom_rolling_std(df['A'], window_size=3) print(result)
How to apply a custom transformation with rolling window in Pandas?
import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom transformation function def custom_transformation(data): return data * 2 # Apply custom transformation with rolling window result = df['A'].rolling(window=3).apply(custom_transformation) print(result)
How to compute rolling median with a custom window size in Pandas?
import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom function for rolling median def custom_rolling_median(data, window_size): return data.rolling(window=window_size).median() # Apply custom rolling median with window size 3 result = custom_rolling_median(df['A'], window_size=3) print(result)
How to apply a custom function with rolling window and handle missing values in Pandas?
import pandas as pd # Sample DataFrame with missing values df = pd.DataFrame({'A': [1, 2, None, 4, 5]}) # Define custom function def custom_function(data): return data.max() - data.min() # Apply custom function with rolling window and handle missing values result = df['A'].rolling(window=3, min_periods=1).apply(custom_function) print(result)
How to compute rolling sum with a custom window size in Pandas?
import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom function for rolling sum def custom_rolling_sum(data, window_size): return data.rolling(window=window_size).sum() # Apply custom rolling sum with window size 3 result = custom_rolling_sum(df['A'], window_size=3) print(result)
How to apply a custom weighted average with rolling window in Pandas?
import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom function for weighted average def custom_weighted_average(data): weights = [0.25, 0.5, 0.25] # Example weights return sum(data * weights) # Apply custom weighted average with rolling window result = df['A'].rolling(window=3).apply(custom_weighted_average) print(result)
How to compute rolling maximum with a custom window size in Pandas?
import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom function for rolling maximum def custom_rolling_max(data, window_size): return data.rolling(window=window_size).max() # Apply custom rolling maximum with window size 3 result = custom_rolling_max(df['A'], window_size=3) print(result)
curl-commandline gradle-plugin ssrs-expression catplot reduce stopwatch stdin prefix gensim aapt2