To plot a 1-dimensional Gaussian distribution function in Python, you can use libraries like NumPy and Matplotlib. Here's how you can create and plot a Gaussian distribution:
import numpy as np import matplotlib.pyplot as plt # Parameters of the Gaussian distribution mean = 0 # Mean (center) std_deviation = 1 # Standard Deviation (spread) # Generate x values (e.g., a range of values from -5 to 5) x = np.linspace(-5, 5, 100) # Calculate the Gaussian distribution values for each x gaussian_values = (1 / (std_deviation * np.sqrt(2 * np.pi))) * np.exp(-(x - mean)**2 / (2 * std_deviation**2)) # Create a plot plt.figure(figsize=(8, 6)) plt.plot(x, gaussian_values, label='Gaussian Distribution') # Add labels and title plt.xlabel('X') plt.ylabel('Probability Density') plt.title('1-Dimensional Gaussian Distribution') # Show a legend plt.legend() # Show the plot plt.grid(True) plt.show()
In this code:
We specify the parameters of the Gaussian distribution: the mean (mean
) and the standard deviation (std_deviation
).
We create an array of x
values using np.linspace
to cover a range of values from -5 to 5. You can adjust the range and the number of points as needed.
We calculate the corresponding Gaussian distribution values using the formula for the probability density function (PDF) of a Gaussian distribution.
We create a plot using Matplotlib, setting the x-values as x
and the Gaussian values as gaussian_values
.
We add labels to the axes, a title, and a legend.
Finally, we display the plot using plt.show()
.
Running this code will generate a plot of the 1-dimensional Gaussian distribution with the specified mean and standard deviation. You can adjust the mean
and std_deviation
to visualize different Gaussian distributions.
How to plot a standard 1-dimensional Gaussian distribution function in Python?
import numpy as np import matplotlib.pyplot as plt x = np.linspace(-3, 3, 100) y = np.exp(-0.5 * x**2) / np.sqrt(2 * np.pi) plt.plot(x, y) plt.title('Standard 1D Gaussian Distribution') plt.xlabel('x') plt.ylabel('Probability Density') plt.grid(True) plt.show()
How to plot a 1-dimensional Gaussian distribution function with custom mean and standard deviation in Python?
import numpy as np import matplotlib.pyplot as plt mean = 2 std_dev = 0.5 x = np.linspace(-1, 5, 100) y = np.exp(-0.5 * ((x - mean) / std_dev)**2) / (std_dev * np.sqrt(2 * np.pi)) plt.plot(x, y) plt.title('1D Gaussian Distribution (Mean=2, Std Dev=0.5)') plt.xlabel('x') plt.ylabel('Probability Density') plt.grid(True) plt.show()
How to visualize the cumulative distribution function (CDF) of a 1-dimensional Gaussian distribution in Python?
import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm x = np.linspace(-3, 3, 100) cdf = norm.cdf(x) plt.plot(x, cdf) plt.title('Cumulative Distribution Function of 1D Gaussian') plt.xlabel('x') plt.ylabel('Cumulative Probability') plt.grid(True) plt.show()
How to overlay multiple 1-dimensional Gaussian distribution functions in one plot using Python?
import numpy as np import matplotlib.pyplot as plt x = np.linspace(-5, 5, 100) mean1, std_dev1 = 0, 1 y1 = np.exp(-0.5 * ((x - mean1) / std_dev1)**2) / (std_dev1 * np.sqrt(2 * np.pi)) mean2, std_dev2 = 2, 0.5 y2 = np.exp(-0.5 * ((x - mean2) / std_dev2)**2) / (std_dev2 * np.sqrt(2 * np.pi)) plt.plot(x, y1, label='Gaussian 1 (Mean=0, Std Dev=1)') plt.plot(x, y2, label='Gaussian 2 (Mean=2, Std Dev=0.5)') plt.title('Overlay of 1D Gaussian Distributions') plt.xlabel('x') plt.ylabel('Probability Density') plt.legend() plt.grid(True) plt.show()
How to plot the probability density function (PDF) of a truncated 1-dimensional Gaussian distribution in Python?
import numpy as np import matplotlib.pyplot as plt from scipy.stats import truncnorm lower_bound, upper_bound = 0, 2 mean, std_dev = 1, 0.5 x = np.linspace(lower_bound, upper_bound, 100) y = truncnorm.pdf(x, (lower_bound - mean) / std_dev, (upper_bound - mean) / std_dev, loc=mean, scale=std_dev) plt.plot(x, y) plt.title('PDF of Truncated 1D Gaussian (0 to 2)') plt.xlabel('x') plt.ylabel('Probability Density') plt.grid(True) plt.show()
How to plot the probability density function (PDF) and cumulative distribution function (CDF) of a 1-dimensional Gaussian distribution together in Python?
import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm x = np.linspace(-3, 3, 100) pdf = norm.pdf(x) cdf = norm.cdf(x) fig, ax1 = plt.subplots() color = 'tab:blue' ax1.set_xlabel('x') ax1.set_ylabel('PDF', color=color) ax1.plot(x, pdf, color=color) ax1.tick_params(axis='y', labelcolor=color) ax2 = ax1.twinx() color = 'tab:red' ax2.set_ylabel('CDF', color=color) ax2.plot(x, cdf, color=color) ax2.tick_params(axis='y', labelcolor=color) fig.tight_layout() plt.title('PDF and CDF of 1D Gaussian Distribution') plt.grid(True) plt.show()
How to plot a 1-dimensional Gaussian distribution with shaded regions indicating probability intervals in Python?
import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm x = np.linspace(-3, 3, 100) y = norm.pdf(x) plt.plot(x, y, 'k-', linewidth=2) # Shading regions for probability intervals plt.fill_between(x, y, where=(x <= -1), color='red', alpha=0.3, label='P(x <= -1)') plt.fill_between(x, y, where=((x > -1) & (x <= 1)), color='blue', alpha=0.3, label='-1 < x <= 1') plt.fill_between(x, y, where=(x > 1), color='green', alpha=0.3, label='P(x > 1)') plt.title('1D Gaussian Distribution with Probability Intervals') plt.xlabel('x') plt.ylabel('Probability Density') plt.legend() plt.grid(True) plt.show()
How to plot the probability density function (PDF) of a 1-dimensional Gaussian distribution with varying mean and standard deviation in Python?
import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm x = np.linspace(-5, 5, 100) mean_values = [0, 1, -1] std_dev_values = [0.5, 1, 1.5] for mean, std_dev in zip(mean_values, std_dev_values): pdf = norm.pdf(x, loc=mean, scale=std_dev) plt.plot(x, pdf, label=f'Mean={mean}, Std Dev={std_dev}') plt.title('PDF of 1D Gaussian Distribution with Different Parameters') plt.xlabel('x') plt.ylabel('Probability Density') plt.legend() plt.grid(True) plt.show()
How to plot a 1-dimensional Gaussian distribution function with logarithmic scale in Python?
import numpy as np import matplotlib.pyplot as plt x = np.linspace(0.01, 10, 100) y = np.exp(-0.5 * np.log(x)**2) / (x * np.sqrt(2 * np.pi)) plt.plot(x, y) plt.title('1D Gaussian Distribution with Logarithmic Scale') plt.xlabel('x') plt.ylabel('Probability Density') plt.grid(True) plt.show()
How to plot the probability density function (PDF) of a truncated 1-dimensional Gaussian distribution with specified bounds in Python?
import numpy as np import matplotlib.pyplot as plt from scipy.stats import truncnorm lower_bound, upper_bound = -1, 2 mean, std_dev = 0, 1 x = np.linspace(lower_bound, upper_bound, 100) y = truncnorm.pdf(x, (lower_bound - mean) / std_dev, (upper_bound - mean) / std_dev, loc=mean, scale=std_dev) plt.plot(x, y) plt.title('PDF of Truncated 1D Gaussian (-1 to 2)') plt.xlabel('x') plt.ylabel('Probability Density') plt.grid(True) plt.show()
rotation apache-storm symfony2-easyadmin todataurl sap-fiori fragment-identifier pojo rpgle react-native-flexbox kaggle