Reversing 'one-hot' encoding in Pandas

Reversing 'one-hot' encoding in Pandas

Reversing one-hot encoding in Pandas involves converting a set of binary indicator columns back to a single categorical column. You can achieve this by using the idxmax() function along with the apply() function.

Here's how you can reverse one-hot encoding in a Pandas DataFrame:

import pandas as pd

# Create a sample DataFrame with one-hot encoded data
data = {'Category_A': [0, 1, 0],
        'Category_B': [1, 0, 0],
        'Category_C': [0, 0, 1]}
df = pd.DataFrame(data)

# Reverse one-hot encoding
reversed_df = df.apply(lambda row: row.idxmax(), axis=1)

print(reversed_df)

In this example, apply() is used with the axis=1 parameter to apply the idxmax() function row-wise. The idxmax() function returns the column label (category) with the maximum value (1) in each row. This effectively reverses the one-hot encoding by determining which category is "active" (encoded with 1) for each row.

The output will be:

0    Category_B
1    Category_A
2    Category_C
dtype: object

Now, you have a Series containing the reversed one-hot encoded categories for each row.

Keep in mind that this method assumes that each row should have exactly one category set to 1 in the original one-hot encoded DataFrame. If there are cases where multiple categories are set to 1 in a single row, this approach might not work as expected.

Examples

  1. "How to reverse one-hot encoding to original categorical values in Pandas"

    • Description: This query focuses on reversing a one-hot encoded DataFrame back to its original categorical form.
    • Code:
      import pandas as pd
      
      # One-hot encoded DataFrame
      df = pd.DataFrame({
          'A': [1, 0, 0],
          'B': [0, 1, 0],
          'C': [0, 0, 1]
      })
      
      # Reversing one-hot encoding
      df['category'] = df.idxmax(axis=1)
      
  2. "Reversing one-hot encoding with multiple categories in Pandas"

    • Description: This query addresses how to reverse one-hot encoding when multiple categories are present.
    • Code:
      import pandas as pd
      
      # One-hot encoded DataFrame with multiple categories
      df = pd.DataFrame({
          'red': [1, 0, 0],
          'green': [0, 1, 0],
          'blue': [0, 0, 1]
      })
      
      # Reversing one-hot encoding to a single categorical column
      df['color'] = df.idxmax(axis=1)
      
  3. "How to handle ties when reversing one-hot encoding in Pandas"

    • Description: This query is about addressing tie situations where there might be multiple '1's in a one-hot encoded DataFrame.
    • Code:
      import pandas as pd
      
      # One-hot encoded DataFrame with ties
      df = pd.DataFrame({
          'X': [1, 0, 1],
          'Y': [1, 1, 0]
      })
      
      # Handling ties by creating a list of active categories
      df['categories'] = df.apply(lambda row: [col for col in df.columns if row[col] == 1], axis=1)
      
  4. "Reversing one-hot encoding with specific ordering in Pandas"

    • Description: This query focuses on reversing one-hot encoding while considering a specific order for the categories.
    • Code:
      import pandas as pd
      
      # One-hot encoded DataFrame with an order to categories
      df = pd.DataFrame({
          'small': [0, 1, 0],
          'medium': [1, 0, 1],
          'large': [0, 0, 0]
      })
      
      # Reversing one-hot encoding while keeping a specific order
      df['size'] = df.idxmax(axis=1).astype('category', categories=['small', 'medium', 'large'], ordered=True)
      
  5. "Reversing one-hot encoding with missing data in Pandas"

    • Description: This query is about reversing one-hot encoding in the presence of missing data or NaN values.
    • Code:
      import pandas as pd
      import numpy as np
      
      # One-hot encoded DataFrame with NaN values
      df = pd.DataFrame({
          'X': [1, 0, np.nan],
          'Y': [0, 1, 0],
          'Z': [0, 0, 1]
      })
      
      # Filling NaN values and reversing one-hot encoding
      df = df.fillna(0)
      df['category'] = df.idxmax(axis=1)
      
  6. "Reversing one-hot encoding to original multi-label values in Pandas"

    • Description: This query deals with reversing one-hot encoding where multiple labels may be true for a single observation.
    • Code:
      import pandas as pd
      
      # One-hot encoded DataFrame with multiple labels
      df = pd.DataFrame({
          'apple': [1, 0, 1],
          'banana': [1, 1, 0],
          'cherry': [0, 1, 0]
      })
      
      # Reversing one-hot encoding to get multi-label categories
      df['fruits'] = df.apply(lambda row: [col for col in df.columns if row[col] == 1], axis=1)
      
  7. "Reversing one-hot encoding with custom index in Pandas"

    • Description: This query focuses on reversing one-hot encoding when the DataFrame has a custom index or specific order.
    • Code:
      import pandas as pd
      
      # One-hot encoded DataFrame with custom index
      df = pd.DataFrame({
          'Monday': [0, 1, 0],
          'Tuesday': [1, 0, 0],
          'Wednesday': [0, 0, 1]
      }, index=['Week 1', 'Week 2', 'Week 3'])
      
      # Reversing one-hot encoding with a custom index
      df['day'] = df.idxmax(axis=1)
      

More Tags

laravel genymotion mfmailcomposeviewcontroller json database-trigger react-navigation ms-access uppercase database-restore mysqljs

More Python Questions

More Date and Time Calculators

More Entertainment Anecdotes Calculators

More Financial Calculators

More Pregnancy Calculators