Reversing one-hot encoding in Pandas involves converting a set of binary indicator columns back to a single categorical column. You can achieve this by using the idxmax()
function along with the apply()
function.
Here's how you can reverse one-hot encoding in a Pandas DataFrame:
import pandas as pd # Create a sample DataFrame with one-hot encoded data data = {'Category_A': [0, 1, 0], 'Category_B': [1, 0, 0], 'Category_C': [0, 0, 1]} df = pd.DataFrame(data) # Reverse one-hot encoding reversed_df = df.apply(lambda row: row.idxmax(), axis=1) print(reversed_df)
In this example, apply()
is used with the axis=1
parameter to apply the idxmax()
function row-wise. The idxmax()
function returns the column label (category) with the maximum value (1) in each row. This effectively reverses the one-hot encoding by determining which category is "active" (encoded with 1) for each row.
The output will be:
0 Category_B 1 Category_A 2 Category_C dtype: object
Now, you have a Series containing the reversed one-hot encoded categories for each row.
Keep in mind that this method assumes that each row should have exactly one category set to 1 in the original one-hot encoded DataFrame. If there are cases where multiple categories are set to 1 in a single row, this approach might not work as expected.
"How to reverse one-hot encoding to original categorical values in Pandas"
import pandas as pd # One-hot encoded DataFrame df = pd.DataFrame({ 'A': [1, 0, 0], 'B': [0, 1, 0], 'C': [0, 0, 1] }) # Reversing one-hot encoding df['category'] = df.idxmax(axis=1)
"Reversing one-hot encoding with multiple categories in Pandas"
import pandas as pd # One-hot encoded DataFrame with multiple categories df = pd.DataFrame({ 'red': [1, 0, 0], 'green': [0, 1, 0], 'blue': [0, 0, 1] }) # Reversing one-hot encoding to a single categorical column df['color'] = df.idxmax(axis=1)
"How to handle ties when reversing one-hot encoding in Pandas"
import pandas as pd # One-hot encoded DataFrame with ties df = pd.DataFrame({ 'X': [1, 0, 1], 'Y': [1, 1, 0] }) # Handling ties by creating a list of active categories df['categories'] = df.apply(lambda row: [col for col in df.columns if row[col] == 1], axis=1)
"Reversing one-hot encoding with specific ordering in Pandas"
import pandas as pd # One-hot encoded DataFrame with an order to categories df = pd.DataFrame({ 'small': [0, 1, 0], 'medium': [1, 0, 1], 'large': [0, 0, 0] }) # Reversing one-hot encoding while keeping a specific order df['size'] = df.idxmax(axis=1).astype('category', categories=['small', 'medium', 'large'], ordered=True)
"Reversing one-hot encoding with missing data in Pandas"
import pandas as pd import numpy as np # One-hot encoded DataFrame with NaN values df = pd.DataFrame({ 'X': [1, 0, np.nan], 'Y': [0, 1, 0], 'Z': [0, 0, 1] }) # Filling NaN values and reversing one-hot encoding df = df.fillna(0) df['category'] = df.idxmax(axis=1)
"Reversing one-hot encoding to original multi-label values in Pandas"
import pandas as pd # One-hot encoded DataFrame with multiple labels df = pd.DataFrame({ 'apple': [1, 0, 1], 'banana': [1, 1, 0], 'cherry': [0, 1, 0] }) # Reversing one-hot encoding to get multi-label categories df['fruits'] = df.apply(lambda row: [col for col in df.columns if row[col] == 1], axis=1)
"Reversing one-hot encoding with custom index in Pandas"
import pandas as pd # One-hot encoded DataFrame with custom index df = pd.DataFrame({ 'Monday': [0, 1, 0], 'Tuesday': [1, 0, 0], 'Wednesday': [0, 0, 1] }, index=['Week 1', 'Week 2', 'Week 3']) # Reversing one-hot encoding with a custom index df['day'] = df.idxmax(axis=1)
laravel genymotion mfmailcomposeviewcontroller json database-trigger react-navigation ms-access uppercase database-restore mysqljs