Apache Airflow allows you to run tasks in parallel by utilizing its task parallelism feature. Task parallelism means running multiple tasks concurrently, which can improve the overall execution time of your workflows. Here's how you can achieve parallelism in Apache Airflow:
Configure Concurrency:
In your Airflow configuration file (airflow.cfg
), you can configure the maximum number of task instances that can run concurrently across all your tasks. Look for the parallelism
and dag_concurrency
settings. Adjust these settings according to your available resources and the level of parallelism you want to achieve.
Use Multiple Operators:
In your DAG definition, you can use multiple operators to define tasks that can run concurrently. Airflow allows you to define tasks with different dependencies and run them in parallel.
For example:
from airflow import DAG from airflow.operators.python_operator import PythonOperator from datetime import datetime def task_1(): print("Task 1 executed.") def task_2(): print("Task 2 executed.") def task_3(): print("Task 3 executed.") default_args = { 'owner': 'airflow', 'start_date': datetime(2023, 1, 1), } dag = DAG('parallel_example', default_args=default_args, schedule_interval=None) t1 = PythonOperator(task_id='task_1', python_callable=task_1, dag=dag) t2 = PythonOperator(task_id='task_2', python_callable=task_2, dag=dag) t3 = PythonOperator(task_id='task_3', python_callable=task_3, dag=dag) t1 >> [t2, t3]
In the example above, task_2
and task_3
are defined as parallel tasks because they have the same level of indentation and are connected with the >>
operator.
Use TaskGroups (Airflow 2.0+):
In Airflow 2.0 and later versions, you can use TaskGroup
to define and manage parallel tasks more cleanly. TaskGroup
provides better visualization and organization of parallel tasks in the DAG graph.
from airflow import DAG from airflow.operators.python_operator import PythonOperator from airflow.utils.task_group import TaskGroup from datetime import datetime def task_1(): print("Task 1 executed.") def task_2(): print("Task 2 executed.") def task_3(): print("Task 3 executed.") default_args = { 'owner': 'airflow', 'start_date': datetime(2023, 1, 1), } dag = DAG('parallel_example', default_args=default_args, schedule_interval=None) with TaskGroup("parallel_tasks") as parallel_tasks: t1 = PythonOperator(task_id='task_1', python_callable=task_1, dag=dag) t2 = PythonOperator(task_id='task_2', python_callable=task_2, dag=dag) t3 = PythonOperator(task_id='task_3', python_callable=task_3, dag=dag) parallel_tasks
Using TaskGroup
, tasks within the group are automatically parallelized.
Use SubDAGs:
For more complex parallelism scenarios, you can use SubDAGs to encapsulate a group of tasks within a separate DAG.
Remember that while you can define tasks to run in parallel, the level of actual parallelism achieved depends on the resources available in your Airflow environment (like the number of worker nodes) and the configuration settings you've defined.
Keep in mind that running tasks in parallel might require careful consideration of resource utilization, dependencies, and any potential race conditions or contention issues. Always test and monitor your workflows to ensure they're behaving as expected.
"How to run Airflow tasks in parallel?"
from airflow import DAG from airflow.operators.dummy import DummyOperator from airflow.utils.dates import days_ago # Define a simple DAG with parallel tasks with DAG("example_parallel_dag", start_date=days_ago(1), schedule_interval="@daily") as dag: task1 = DummyOperator(task_id="task1") task2 = DummyOperator(task_id="task2") task3 = DummyOperator(task_id="task3") # Run tasks 1, 2, and 3 in parallel [task1, task2, task3]
"Running Airflow DAGs in parallel?"
Executor
and other settings to ensure parallel execution.from airflow import DAG from airflow.operators.dummy import DummyOperator from airflow.utils.dates import days_ago # Define two DAGs to run in parallel with DAG("parallel_dag_1", start_date=days_ago(1), schedule_interval="@daily") as dag1: task1 = DummyOperator(task_id="task1") with DAG("parallel_dag_2", start_date=days_ago(1), schedule_interval="@daily") as dag2: task2 = DummyOperator(task_id="task2")
# airflow.cfg configuration to support parallelism [core] parallelism = 32 # Number of tasks to run in parallel dag_concurrency = 16 # Number of DAG runs in parallel
from airflow import DAG from airflow.operators.dummy import DummyOperator from airflow.utils.dates import days_ago # Create a DAG that uses a pool with 3 slots with DAG("pooled_parallel_dag", start_date=days_ago(1), schedule_interval="@daily") as dag: task1 = DummyOperator(task_id="task1", pool="my_pool") task2 = DummyOperator(task_id="task2", pool="my_pool") task3 = DummyOperator(task_id="task3", pool="my_pool") [task1, task2, task3]
"Running Airflow tasks in parallel with SubDAGs?"
from airflow import DAG from airflow.operators.subdag import SubDagOperator from airflow.utils.dates import days_ago from airflow.operators.dummy import DummyOperator def create_subdag(parent_dag_name, child_dag_name, start_date): with DAG(f"{parent_dag_name}.{child_dag_name}", start_date=start_date, schedule_interval="@daily") as dag: task1 = DummyOperator(task_id="task1") task2 = DummyOperator(task_id="task2") [task1, task2] return dag # Define a parent DAG with a SubDAG with DAG("parent_dag", start_date=days_ago(1), schedule_interval="@daily") as dag: subdag = SubDagOperator( task_id="subdag", subdag=create_subdag("parent_dag", "subdag_1", days_ago(1)) ) end = DummyOperator(task_id="end") subdag >> end
"How to run Airflow tasks in parallel with TriggerRules?"
from airflow import DAG from airflow.operators.dummy import DummyOperator from airflow.utils.dates import days_ago from airflow.utils.trigger_rule import TriggerRule # Define a DAG with tasks running in parallel based on trigger rules with DAG("trigger_rule_parallel_dag", start_date=days_ago(1), schedule_interval="@daily") as dag: start = DummyOperator(task_id="start") task1 = DummyOperator(task_id="task1") task2 = DummyOperator(task_id="task2") task3 = DummyOperator(task_id="task3") end = DummyOperator(task_id="end", trigger_rule=TriggerRule.ALL_DONE) start >> [task1, task2, task3] >> end
"Running Airflow tasks in parallel with different start times?"
from airflow import DAG from airflow.operators.dummy import DummyOperator from airflow.utils.dates import days_ago, timedelta # Define a DAG with tasks starting at different times with DAG("staggered_parallel_dag", start_date=days_ago(1), schedule_interval="@daily") as dag: task1 = DummyOperator(task_id="task1") task2 = DummyOperator(task_id="task2", start_date=dag.start_date + timedelta(minutes=10)) task3 = DummyOperator(task_id="task3", start_date=dag.start_date + timedelta(minutes=20)) [task1, task2, task3]
"Using Airflow XComs to communicate between parallel tasks?"
from airflow import DAG from airflow.operators.dummy import DummyOperator from airflow.operators.python import PythonOperator from airflow.utils.dates import days_ago def push_data(**context): context['ti'].xcom_push(key='key', value='value') def pull_data(**context): value = context['ti'].xcom_pull(key='key') print("Pulled data:", value) # Define a DAG with XCom data sharing between parallel tasks with DAG("xcom_parallel_dag", start_date=days_ago(1), schedule_interval="@daily") as dag: push_task = PythonOperator(task_id="push_data", python_callable=push_data) pull_task = PythonOperator(task_id="pull_data", python_callable=pull_data) push_task >> pull_task
# airflow.cfg configuration for managing parallelism [core] dag_concurrency = 8 # Control number of concurrent DAG runs [pools] default_pool_slots = 8 # Limit the number of parallel tasks
"Running parallel tasks in Airflow with Task Groups?"
from airflow import DAG from airflow.operators.dummy import DummyOperator from airflow.utils.dates import days_ago from airflow.utils.task_group import TaskGroup # Define a DAG with parallel tasks using Task Groups with DAG("task_group_parallel_dag", start_date=days_ago(1), schedule_interval="@daily") as dag: start = DummyOperator(task_id="start") end = DummyOperator(task_id="end") with TaskGroup("group1") as group1: task1 = DummyOperator(task_id="task1") task2 = DummyOperator(task_id="task2") with TaskGroup("group2") as group2: task3 = DummyOperator(task_id="task3") task4 = DummyOperator(task_id="task4") start >> [group1, group2] >> end
istio sqlresultsetmapping jackson-databind calllog sandbox tf.keras nameerror spf linker-errors string-search